

CORSI DI STUDIO

Ε

CORSI DI STUDIO DI MEDICINA E CHIRURGIA

LINEE GUIDA

PER LA COMPILAZIONE DELLE SCHEDE INSEGNAMENTO (SYLLABUS)

Documento approvato da PQA nella riunione del 2.05.2023

FAC.SIMILE SCHEDA DI INSEGNAMENTO IN LINGUA INGLESE

COURSE OF STUDY ACADEMIC YEAR ACADEMIC SUBJECT

General information	
Academic subject	General and Inorganic Chemistry
Degree course	Sciences for the Valorisation of the Gastronomic Heritage
Year of the course	1
Academic calendar (starting and	1 st semester (09-10-2023 / 26-01-2024)
ending date)	
Credits (CFU/ETCS):	6
SSD	СНІМ/03
Language	Italian
Mode of attendance	Not mandatory

Professor/ Lecturer	
Name and Surname	Nicola Margiotta
E-mail	nicola.margiotta@uniba.it
Telephone	080-5442759
Department and address	Department of Chemistry – c/o Dept. of Pharmacy building (1 st floor, Room 207);
	Via E. Orabona 4, 70125 – Bari (Italy)
Virtual room	Oy3hy7x
Office Hours (and modalities:	Every day by previous email appointment
e.g., by appointment, on line,	
etc.)	

Work schedule			
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
150	32	28 (in-class chemical exercises)	90
CFU/ETCS			
6	4	2	

Learning Objectives	The course aims to provide students with the basic knowledge of general and
	inorganic chemistry necessary to face the subsequent chemical subjects of the
	degree course. At the end of the course students will know the structure and
	chemical properties of the elements and their inorganic compounds, of natural
	and synthetic origin, in their theoretical and applicative aspects. Students will be
	able to communicate the corresponding information with adequate terminology
	and in a rigorously scientific manner. Another objective is to provide students
	with both qualitative and quantitative tools to solve stoichiometry problems for
	subsequent laboratory practice, to analyze matter with its compounds,
	properties and chemical transformations, also paying attention to nutritional
	significance.
Course prerequisites	Basic knowledge of chemistry and mathematics (e.g. conversion between units of

	measurement, first and second degree equations, operations with powers and logarithms). The expected level of preparation corresponds to the ministerial programs of secondary school.
Teaching strategie	Teaching will be delivered in person through frontal lessons carried out with the
	aid of PowerPoint presentations and the use of the blackboard. The numerical exercises in the classroom are carried out on the blackboard with the active participation of the students.
Expected learning outcomes in	
terms of	
Knowledge and understanding	In-class lectures aim to provide a rigorous chemical learning of the basic
on:	knowledge of general and inorganic chemistry: properties, composition, and
	structure of matter, atomic structure, chemical bond and geometry of
	molecules, chemical equilibria, basic knowledge of thermodynamics and
	etc
Applying knowledge and	In-class numerical practice involves the acquisition of the basic elements of
understanding on:	stoichiometry or the numerical and calculation aspects relating to the simplest
	chemical concepts and problems. This is done by understanding the text of an
	exercise, developing a solution strategy, carrying out mathematical and
	algebraic calculations and identifying and evaluating the chemically correct
	result. At the end of the course students are able to identify the different types
	of chemical reactions, while and balance them correctly, evaluate the
	the methods for their quantitative treatment.
Soft skills	Making informed judgments and choices
	By applying the acquired concepts and the correct chemical terminology and the
	nomenclature of inorganic compounds, students will be able to independently
	evaluate chemical problems (such as the reactivity of elements and compounds)
	and to choose the most appropriate approach for solving problems associated
	with chemical phenomena.
	• Communicating knowledge and understanding At the end of the course, during which there will be numerous moments of
	interaction with the lecturer, students will be able to explain definitions.
	fundamental concepts and theories learned in a clear and rigorously scientific
	way and to discuss eventually proposed problems/exercises.
	Capacities to continue learning
	At the end of the course, students will be able to autonomously investigate issues
	relating to general and inorganic chemistry, to critically evaluate phenomena and recults and to use them as a basis for addressing subsequent dissiplines in
	the degree course. The general and inorganic chemistry course should also
	provide the student with a critical view of the importance of chemistry in daily
	life and for society in general, especially for aspects related to nutrition and its
	implications on health.
Syllabus	
Content knowledge	Characteristics of Matter and Physical properties: base units in the SI system.
	Phases and transformations of matter. Homogeneous and heterogeneous
	Systems. Atomic theory: Atomic and molar masses. Elements and compounds. Atoms
	molecules, symbols and chemical formulas
	Atomic structure: protons, neutrons, electrons. Atomic number. Mass number.
	Isotopes. Allotropy. Oxidation number. Naming chemical compounds. Mole's
	definition. Avogadro's number. Molar mass. Mass percent composition. Empirical

	formula. Chemical reactions. Strong and weak electrolytes. Reduction-oxidation
	reactions. Precipitation reactions. Chemical reactions and stoichiometry.
	Balancing chemical equations. Electron transfer reactions. Balancing redox
	reactions.
	Atomic models and periodicity: Rutherford's, Bohr's, and Schrödinger's atomic
	models. Quantum numbers. Hydrogen atomic orbitals. Polyelectronic atoms.
	Aufbau principle. Pauli exclusion principle. Hund's rules. Electron configurations.
	Periodicity of atomic properties, atomic and ionic radii. Ionization energy.
	Electron affinity. Electronegativity.
	Chemical bonding: Covalent bond. Lewis Structures. Bonding in molecules and
	poliatomic ions. Resonance structures. Molecular Geometry and V.S.E.P.R.
	theory. Hybrid Orbitals. Molecular orbitals theory and L.C.A.O. Sigma and pi
	bonas. Delocalization of molecular orbitals. Bona order. Bona length. Dipole
	moments. Bona polarizability. Polar molecules. Ionic bona. Metallic bonaing.
	The behavior of access Air composition, Poulo's Law, Charles' Law, Normal and
	STP conditions Ideal as equation Avogadro's law Dalton's Law of partial
	pressures.
	Principles of thermodynamics: heat and chemical reactions. Enthalpy. Entropy
	and measure of disorder. Spontaneity of chemical reactions and Free energy.
	Principles of chemical kinetics: rate of chemical reactions.
	The nature of solutions: measurements of concentration. Effect of temperature
	on solubility. Ideal solutions. Colligative properties. Vapour pressure of a solution.
	Raoult's law. Freezing point depression and boiling point elevation (Cryoscopy ed
	ebullioscopy). Osmosis and osmotic pressure.
	Chemical equilibrium: the equilibrium constant. Direction of an equilibrium
	reaction (the concentration quotient). Influence of intensive state variables on
	equilibrium. Snifts in equilibrium. Le Châtelier's principie.
	Aqueous equilibria: acia ana base definitions (Arrnenius, Brønstea-Lowry, Lewis).
	auilibrium constants. Degree of dissociation. Conjugate acid base pairs. Basic
	and acidic salts. Polynotic acids. Amphinotic species. Acid-base Titrations
	Indicators. Buffer solutions.
	Basics of inorganic chemistry: Main group elements. Transition metals.
	Preparation of top inorganic industrial chemicals.
	Classroom exercises: resolution of exercises relating to the course topics.
Texts and readings	- Introduzione alla chimica (VI Edizione): N.J.Tro. Casa Editrice: Pearson.
	- Fondamenti di Chimica Generale (III Edizione): Chang, Overby. Casa Editrice: Mc
	Graw Hill.
	- Elementi di Stechiometria: Giannoccaro, Doronzo. Casa Editrice: EdiSES.
Notes, additional materials	- <u>https://he.pearson.it/catalogo/1238</u>
	- <u>Mttps://www.mneaucation.it/jonaamenti-ai-chimica-generale-3-ea-con-</u> connect-0788838606200-italy
	- https://www.edisesuniversita_it/default/elementi-di-stechiometria_html
	neps.//www.eusesunversituity/defutity/erement of steemonetruituiti
	The Lecturer will make lesson notes and course slides available.
Repository	Lectures' notes and PowerPoint slides will be downloadable from a Google Drive
	link provided by the Lecturer.
	Exams' tests will be also available on the UniBa personal page of the Lecturer
	(<u>https://www.uniba.it/docenti/margiotta-nicola/attivita-didattica</u>). On the web
	platform IEAMS a team has been created for file sharing.
Assessment	

Assossment methods	The avam consists of an oral interview in which the student, in addition to the
Assessment methous	The exam consists of an oral interview in which the stadent, in addition to the
	classic questions relating to theoretical topics concerning general chemistry, will
	also be given exercises and problems (which require carrying out calculations for
	resolution) similar to those carried out during the exercises on the blackboard in
	the classroom during the course. The student will be provided with a periodic
	table of the elements while the calculator must be proprietary and non-
	programmable. The use of PCs, tablets, mobile phones and smartwatches
	connected to the internet is not permitted. The final evaluation is based on the
	results obtained in the exercises/problems and in the questions purely relating to
	the theoretical part of the course. A possible intermediate test (written
	exemption – esonero scritto) will be carried out compatibly with the regular
	progress of the course. If the written esonero is passed, the student will be able
	to access the oral session where he will be interviewed only on the part of the
	exercises carried out after the exemption.
Assessment criteria	Knowledge and understanding
	Students must demonstrate the ability to: discursively organize the knowledge of
	the main chemistry laws: critically think about the main chemical phenomena:
	competently evolves the topics studied using specialized chemical vocabulary and
	competently expose the topics studied using specialized chemical vocabulary and scientific terminology
	 Applying knowledge and understanding
	• Applying Knowledge and anderstanding The evaluation of the written evercises will consider correctness of the numerical
	results together with an explanation of the procedures used to obtain them
	results together with an explanation of the procedures used to obtain them,
	scientific concrence between interdependent results and the relative unit of
	measurement of the physical quantities usea.
	• Autonomy of judgment
	Students' ability to deal with a chemical problem will be evaluated, such as the
	possibility that a chemical reaction may or may not occur.
	Communicating knowledge and understanding
	The oral interview includes the resolution of exercises and problems of general
	chemistry, a minimum of three questions on the contents covered during the
	course.
	Communication skills
	Evaluation elements of the oral exam are the qualitative and quantitative
	correctness of the exposed definitions, laws and demonstrations carried out, the
	degree of depth of the topics as well as students' ability to correlate different
	aspects of a chemical phenomenon.
	Capacities to continue learning
	It will be evaluated both by the method of solving chemical problems and
	answering to theoretical question during the oral interview.
Final exam and grading criteria	The final grade is awarded out of thirty. The exam is considered passed when the
-	grade is greater than or equal to 18/30. The resolution of the general chemistry
	exercises and problems administered during the oral exam will be evaluated with
	the same criteria adopted for the evaluation of the answers to the questions
	regarding the theoretical topics.
Further information	-